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Let me begin with an obvious point. The future of data analysis in

sociological research depends on the quality of our theories and of our

measurement procedures. The fact that data analysis is today something of

an art that requires numerous distinct judgmental decisions, each with po-

tentially different implications, is a reflection of the fact that there

are numerous competing theoretical explanations for each piece of informa-

tion at our disposal. Likewise, there is no real consensus on our measure-

ment procedures or definitive criteria that can be used to decide among in-

dicators of a given concept. The extent and nature of measurement errors

are often unknowns, and we have yet to develop the practice of attempting

to estimate measurement errors and to incorporate these estimated errors

into our tests. In view of all this, it is indeed surprising to find two

or more analysts reaching essentially the same conclusions when confronted

with the same data.

To the degree that a taeory is clearly specified and its implications

made fully explicit, and to the degree that our measurement problems are

resolved, we can expect to find data analysis becoming increasingly routine

and implied by the theory and measurement procedures. Conversely, to the

degree that tae theory and measurements are not specified, a heavier burden

will fall on the data analyst to generate reasonable theoretical explana-

tions as a product of his explorations with the data. But in doing so, he
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will also have to make assumptions about the adequacy of Ids measurement pro-

cedures and tne linkages betdeea his indicators and tie underlying variables

of real interest.

Tae task of the metaodologist is to explicate this process of interrelat-

ing theory, measurement, and data analysis procedures. I believe we nave made

very good progress during the decade of the 1960's in learning more about ele

logic of data analysis and the sophisticated use of multivariate analysis pro-

cedures. finch of this is due to our having been able'to borrow ideas from

more advanced fields. however, it has presumed the existence of reasonably

adequate theories and the nonexistence of measurement errors. since it is

far less likely that we will ue able to borrow our theories and measures from

these other disciplines, we will henceforth be muca more on our own. I think

we have reacaed a point where our knowledge of how to analyze data has out-

stripped our theoretical knowledge and our present measurement capauilities

and that de must therefore turn our enercies during tne decades of tine 1970's

and 1980's more in the direction of theory construction and measurement. Un-

less we do so, I cannot predict a very bright future for data analysis. For

it is obvious that any form of analysis aimed at genuine explanations of

social phenomena requires a priori theoretical assumptions about measurement

errors.

These points are all very general and probably not very controversial.

I snould like to make them muca more concrete uy discussing the relationship

between measurement and data analysis, putting aside tae equally complex

problems of the relationship between theory and measurement, and between

theory and analysis. Testing a theory ouviously requires a supplementary

or auxiliary theory concerning the linkages between tue variaoles of theo-

retical interest and one's indicators, as well as tie disturbing influences
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tiiat may also affect the dataul This auxiliary theory may be of no real

interest suostantively, a,id may be of a rataer mundane sort. But it never -

treeless cannot be neglected if ire are to adhere to any reasonable standards

as to what we mean by "testing" a theory. It seems to me teat have thus

fax been satisfied with extremely crude tests of our theories. If a theory

predicts the direction of a feu total correlations, and if results are sig-

nificant at the .05 significance level, then tne theory has been 'tested.'

But what about the numerous alternative taeories, includina those tiiat allow

for measurement errors? The fact that tests of the null hypotaesis enable

us to rule out the simple "chance" alternative does not mean very much, given

the wide variety of spurious relationships and other possible kinds of dis-

tortions.

The causal approacu to measurement errors, which involves the inclusion

of both unmeasured and measured variables in explicit causal models, ass

given us a number of important insights into the ways in which random and

nonrandom measurement errors can be conceptualized, the kinds of complications

they produce, and the limitations of statistical approaches to estimating

these errors. In the following two sections I shall discuss nontechnically

a number of specific conclusions tiiat have 'been reached. If nothinu else,

these results should sensitize sociologists to the importance of careful at-

tention to measurement problems at the data collection stages of the research

process.

In very general terms, the presence of unmeasured variables and measure-

meat errors in a causal system introduces more unknowns than can be handled

unless additional a priori assumptions are made. The more faith we have in

the underlying theory the more such assumptions we can make in order to es-

timate our measurement errors. And the more faith we have in our measurement
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assulapti.one, the simpler our auxiliary theory can Le, and the wetter position

we will be in to test complex theories and to obtain accurate estimates of the

fundamental causal parameters. But when bota the theory and the measurerent

assumptions are in doubts we shall be in serious trouble.

Of course this is precisely tie position we are in with respect to con-

temporary sociology: we do not really believe our theories nor do ire have

much faith in our measurements. Ue may blindly accept the adequacy of the

one in order to assess the other (as we do when we assume measurement errors

to be negligible), but this does not really help. In effect, our theories

and measurement procedures are inextricably bound together in the testing and

estimating phases of researc:L, and improvements in the one can only come

about througa improvements in the otner. however, since numerous subleties

seem to be involved in the processw a good deal more methodological research

will De necessary before we can adequately formulate the problem in sucn a

oay that ye can deal with it in a cumulative fashion.

In the next section we shall examine a few specific kinds of complica-

tions and distortions that may be produced by random and nonrandom measure-

ment errors. In the following section we shall then deal kith statistical

approacaes designed to eliminate or estimate these effects of measurement

errors. The final section will explore some practical implications for the

profession.

DISTORTIONS MIMED BY HEASURElIENT ERRORS

Multicollinearity. In nonexperimental research we commonly find that

many of the independent variables, the effects of which we wish to isolate,

are themselves more highly intercorrelated than each is to the dependent
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variables under study. As we develop relatively complex causal models of real

processes, I believe ve shall necessarily utilize what have been referred to

as "block-recursive" systems, an example of which is given in Figure 1..2 The

essential feature of such systems is that variables are assumed to form blocks

or sets in such a ray that, although there may be reciprocal causation or

feedback klitbin blocks, there is one-way causation or negligible feedback

between blocks. In fact, it cab be shown tnat a block-recursive model must

be assumed In order to delimit the variables to any finite number.3 All vari-

ables among which there is reciprocal causation must be analyzed in terms of

simultaneous equations that cannot legitimately be dealt oith separately. How-

ever, it is possible to omit variables in all higher-numbered blocks that are

taken to be dependent upon the block of variables under consideration, and

variables in lower-numbered blocks may be selectively introduced for the pur-

pose of solving for the unknowns in the, system.

For example, suppose variables in block I are systemic variables

which change only very slowly and which are taken as "situational factors"

that irquence or set limits to behavior. Perhaps block 2 variables are

"back; round'" factors relating to the early socialization of an individual,

whereas variables in block 3 are his present status characteristics. Block 4

variables may constitute a set of present attitudes, whereas those in block 5

may be benavioral variables that the theory is designed to explain. If we

were primarily interested in explaining block 3 status variables we could

then neglect variables in blocks 4 and 5, but we would want to include vari-

ables in blocks I and 2. If we wanted to allow for major feedback from block

5 to block 3, then we would not be justified in analyzing blocks 3-5 indivi-

dually.
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Very frequently we wisa to assess the relative effects of variables with-

in the same block on certain specific variables in a higher-numbered block.

For example, we may wish to compare the effects of status variables such as

education, occupation, and income on attitudes, or those of various attitud-

inal variables on behavior. In such instances we are likely to find higher

intercorrelations among the several independent variables than between these

variables and the dependent variable. In another _ry common kind of situa-

tion, we rish to assess whether variables in one particular block have greater

explanatory power than variables in a second block, which is also correlated

with the first clock.

In all of these instances it will be necessary to obtain accurate meas-

ures of each variable, and the need for accuracy will increase with the inter-

correlations among the independent variables. Let us see why this is the case.

It turns out that purely random measurement errors in any particular inde-

pendent variable will attenuate both the correlation with the dependent vari-

able and the regression coefficient linking these variables. If we take the

measured value of X as X' and assume this is related to X by the simple for-

mula X' = X + e, where e is a random variable (and therefore uncorrelated

with X), then a2x, = a2x4.c2
e, meaning teat the variance c" the measured value

of X will be greater than the true variance. Furthermore, the amount of at-

tenuation in the slope estimate (and also the correlation) increases as (52x

becomes small relative to the measurement error variance. An approximate

formula for the slope attenuation in the uivariate case is given by

E (byx ) /3Y4 a
2
X A=

YX
1 + a2e/02x /2x,

where .y,x represents the true slope and where E(byxt) represents the expected
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value of the least squares estimate based on the measured value X'.4

If the equation for Y contains several intercorrelated independent vari-

ables, then random measurement error in one of them will ordinarily make the

b iased upward. In effect, they will receive some of the credit that

others look better. That is, although the slope estimate of the poorly meas-

ured variable will be biased downward, the slopes of the remaining variables

will be b

prin-

ciple holds.

blocks of independent variables, with all intercorrelations within blocks be-

only two. Tvo sets of results involving slightly different correlations with

should have been awarded to the poorly measured variable. Of course more

tnis principle.5 In one such set, diagrammed in Figure 2, there are two

tuan one variable may be measured inaccurately, but the same general

=n .......

ing .30, and with each possible correlation between variables in different

the dependent variable Y are given below:

Block 2

blocks being .20. The first blocts. contains three variables and the second

Block 1

ized partial slopes for these data are given in the second column. Notice

tl

Gordon has constructed a number of different data sets to illustrate

In Set A all total correlations with Y are exactly .60. The standard-

.X4

X1

X
2

X
3

X5

Correlation
with Y

.60

. 60

. 60

.60

. 60

Set A

Partial
Slope

.19

.19

. 27

. 27

Correlation
with Y

. 55

.60

. 60

. 60

. 60

'Set B

Partial
Slope

.19

.19

.19

.38

.13



8

that tae partial slopes (.27) for tbf- two variables in Block 2 are al-

most half again as large as the slopes (.1;) for the three variables it

Block 1. This is a reflection of the fact that there are more vari-

ables in Block 1 tnan in Block 2. In other words, the more variables

that are used to represent any given block of highly intercorrelated

variables, the less the effect attributed to any one of them. If one

were to infer from this, however, that X4 is more -important' than X3

he would be led astray. The fewer variables one uses to represent a given

block, the more important each will appear to be. In another data set,

identical to the above set except for tae addition of a single variable

in a third block, also correlated .60 with Y, the slopes of Block 1

variables were reduced to .16 and those for Block 2 to .23, whereas the

slope for the single variable in Block 3 vas .41.

Suppose, now, that we introduce (as in Set B) a rather minor meas-

urement error into X5, resulting in a slightly reduced correlation (.55)

with Y.
6 We see treat the partial slope relating Y to X5 drops sharply to

.13, whereas taat between Y and the other variable in Block 2 increases

dramatically to .38. Gordon refers to this phenomenon as a "tipping ef-

fect", in which one (or more) variables receive credit for the explana-

tory power of a variaide in tne same block that is only slightly less

strongly correlated with the dependent variable.

We can see from this example how slight attenuations produced by

random measurement errors can make it extremely difficult to sort out the

component effects of highly intercorrelated inderendent variables. Sim-

ilarly, slight distortions produced by nonrandum measurement errors or

sampling fluctuations could produce equally dramatic results. If one

wishes to sort out these component effects, he must have both large (and
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properly selected) samples and negligible measurement errors.

gj.posi, Among Alternative Causal Models.7 Let us next consider the

somewhat related but more general problem of choosing among causal models

by a process of comparing the actual data with the predictions implied

by various alternative models. Although it is conceivable twat we will

some day produce theories twat imply specific nonzero values for certain

parameters, by far the most common type of situation involves causal

models that imply zero values for specific partial correlations (or slopes)

owing to the assumption that there is no direct causal link between cer-

tain pairs of variables. For example, in Figure 3 there are no arrows

drawn between Xi and X3, between X3 and andand between X2 and X5. This

model therefore implies that the partial correlations r112, r34+12y and

r25.134 should all be approximately zero, except for sampling error. No

specific predictions can be made about the remaining correlations or par-

tial slopes, though the direct and indirect effects of each variable may

be estimated from the data.

Whenever there are random or nonrandom measurement errors in some of

the variables, these predictions will no longer hold, and it will be dif-

ficult to distinguish the model of Figure 3 from numerous alternatives.

We can again illustrate with a very simple numerical example. Suppose we

are dealing with the classical case of a spurious relationship between

X and Y that is produced by a single variable W, as indicated in Figure 4.

If the correlations between W and X and between W and Y are each .80,

then the correlation between X and Y should be (.80) 2
or .64, if we as-

sume that there are only random disturbances operating on X and Y. How-

ever, suppose all three variables are measured with random error. The

11
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measured values of W, X, and Y are given by W', X', and Y' respectively,

and let us assume that the correlation of each indicator with the true

value is .80 and that the errors are purely random. (We shall later

represent nonrandom errors by drawing in additional arrows linking the

indicators.)

It 'might be thought that if all variables are measured with the

same relative accuracy then our inferences would not be affected. But in

multivariate models this is not the case, as can be seen if we were to

attempt to partial out the effects of W by using W° instead of W. If rxy

.64, then the partial rxy.w (using the true values) reduces to zero since

rXY-W
rxy rXWr ?W

.64 - (.80)(.80)
o

r2xw r2yw - 64 "1 - .64

However, if we use the measured values we can expect to obtain, the

following results (except for sampling error):

xty9 = rxIxrxwrwyryy, = (.80) 4 = .41

rxtwt rxixrxwrww1 = (.30)3 - .51

ryt =
W' rytyrywrwwv = (.80)3 = .51

and
.41 - (.51) (.51)

rXvy
"* .20

47: .26 /17: .26
Thus, although the true correlation between X and Y will be re-

duced from .64 to 0 with a control for W, the measured correlation will

only be reduced from .41 to .20. Ones. might be led to the conclusion

that there is also a direct link between X and Y, or that at least there

are other variables in the system that need to be controlled in order to

take out the relationship between X and Y. In this very simple example,

assuming that all measurement errors are purely random, it is more
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important to remove the errors from the control variable W than from

either X or Y. It can easily be verified that had we retained the meas-

urement errors in X and Y, but used W instead of W' as the control, the

partial correlation rXIyv.W would be expected to reduce to zero, as

predicted by the model.

In many practical research situations an investigator wishes to

test against the possibility of a spurious relationship in order to

convince a skeptic that he has, in fact, located an important cause of

a given dependent variable. However, his measurement of control vari-

ables may have been much more crude than that of the variables of pri-

mary interest. Sometimes this results from the necessity of economizing

at the data collection stage. In other instances the control variable

may be only a very crude indicator of some other' variable of greater

theoretical interest. For example, one may use socalled "background

variables" such as sex, age, race, father's occupation, or parental re-

ligion as indicators of socialization variables. Or it may be thought

necessary to dichotomize the control variables so as to preserve enough

cases in each cell. In all of these instances it may not be recog-

nized that one is not really making a fair test of the alternative hy-

pothesis that the relationship between X and Y is entirely spurious and

due to the control variable(s) under consideration.

Nonlinearity and Nonadditivity. Simple linear additive models

are of course in many instances reasonable approximations to reality,

but as a science matures and improves its measuring instruments, more

complex kinds of equations will be found appropriate. Furthermore, in

attempting to choose among rival hypotheses, or in modifying one's
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explanations so as to take alternative theories into account, it is often

advisable to utilize more complex models than simple linear additive ones.

Obviously, if there are extensive random or nonrandom measurement er-

rors that produce "noise" in the data, it becomes difficult to introduce

these needed refinements.

Perhaps a few examples will be sufficient to illustrate this rather

obvious point. Many of our verbal propositions in sociology take the

qualitative form "the greater the X, the greater ,the Y." Aside from cer-

tain ambiguities as to causal symmetry or asymmetry involved in such

'greater-greater" statements, there is usually nothing said about the

exact form of the relationship implied.
8

Perhaps linearity is intended,

but often there may be a kind of "saturation effect" or "diminishing

returns" argument implicit in the discussion of the theory. In other

words, it may not be expected that equal increments of X will produce

the same changes in Y as the level of X increases. In such an instance,

it would be preferable to state the proposition as follows "Y is a

monotonic increasing function of X that has a decreasing slope." This would

imply a nonlinear 'relationship of the form. given in Figure 5, which might

be represented by an equation expressing Y as a positive function of logX.

If we wished to test such a proposition, we would need to consider

various kinds of artifacts produced by measurement error that might also

generate the same kind of curve. One obvious possibility is that the in-

strument used to measure Y is relatively insensitive to differences among

high values, se that individuals with high Y scores are all bunched to-

gether near the upper extreme of the measured Y scores, even where they

differ considerably on their true Y scores. For example, a "political

conservatism "` scale may lump together a wide range of individuals simply
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because many persons of varying persuasions have endorsed nearly all of

the items. Conceivably there may be relatively more random measurement

error at one end of the Y continuum than the other, perhaps because of

a greater illiteracy at that extreme. Or rapport and understanding of

the research objectives may be poorer at one extreme than the other,

producing a regression toward the mean that is more extensive in one

direction than the other.

Similarly, measurement errors can produce artifacts leading to stat-

istical interaction or nonadditivity in the data.9 It has already been

noted that purely random measurement errors will attenuate slope estimates

in proportion to the ratio a2x/a
2
xf. Recalling that in the case of random

errors 02x, = 02x 0
2
e'

we see that this implies that even where 0 2e re-

mains constant, we may have differential attenuation according to the

dispersion in the true X scores. Likewise, if there happens to be a

greater measurement error component ate
for one subpopulation than another,

the measured slopes may differ even though the true slopes are equal.

This gill produce statistical interaction, as tested by analysis covari-

ance. A similar phenomenon will occur in the case of categorized data.

If contingency tables are used, relationships will appear weaker in those

tables representing subpopulations with the greatest relative random meas-

urement errors.

There may also be nonrandom measurement errors produced by crude

classifications. Suppose, for example, that workers have been dichot-

omized into white- and blue-collar occupations and as having "high" and

"low" educations. This All produce four cells, but it is erroneous to

assume that either occupation or education is being "held constant" in

any column or row. Persons who are 'high" on education are likely to have
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very different white-collar occupations than are white-collar workers

with "low" educations. If the joint effects of these two variables on

some dependent variable are being studied, one may infer nonadditive

effects whea an additive model would be more realistic.

For example, a status-inconsistency theory might predict that per-

sons who are either low-high or high-low will be more liberal than those

who are high-high or low-low. This prediction would show up as a dif-

ference of sums, as in the following table:

Education
High

White-
Occupation collar 30

Low

60

Blue- 60 70
collar

where high scores in the body of the table represent high liberalism

scores. 10 Thus the sum of the HH and LL cells is 100, where,.1 that for

the inconsistent cells, LH and HL, is 120. But an alternative explana-

tion might be that high occupation, alone, produces conservatism. The

very low liberalism scores in the top left cell might merely reflect the

possibility that the white-collar persons in this cell are primarily

professionals and managers, whereas those in the bottom left cell are

in the clerical and sales occupations. Similarly, persons classed as

"blue-collar high education" and those as "white-collar low education"

might have occupations of very similar status.

It is hoped that the several kinds of illustrations of distortions

that can be produced by errors of measurement are sufficient to convince

the reaaer that, if we are to improve our testing and estimating pro-

cedures, we must simultaneously pay more attention to problems of meas-

urement. As long as exploratory studies involving large numbers of
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variables are in vogue, measurement errors way not prove insurmountable

barriers. ;gut as soon as we begin to take seriously the tasks of re-

fining our theories and of testing them against the numerous possible

competing alternatives, we will very quickly reach an impasse without im-

proved measurement.

In the next section we shall consider various statistical approaches

to estimating the extent of measurement error and correcting for its pre-

sence. We snail see that these procedures require relatively strong a

priori theoretical assumptions unless our assumptions about measurement

errors can be kept relatively simple. Of course it is preferable to

purify measures at the data collection stage, rather than attempting to

remove errors at the analysis stage. Nevertheless, a careful study of

just what can and cannot be accomplished after the data have been col-

lected should provide guidelines and cautions with important implications.

THE STATISTICAL ESTUATION OF RANDOII AND NONRANDOM 1IEASUREi1ENT ERRORS

Random Errors. In the cape of purely random measurement errors, it

turns out that random errors in a dependent variable Y will not system

atically bias a slope estimate, though they will attenuate correlations

with Y. But as we have seen, random errors in an independent variable X

will attenuate correlations and slopes, latter according to the ap-

proximate formula

E(b.yx1) =
(3Yx

1 + a 2e/a x

One obvious way to correct for this bias is to insert estimates of ate

and a 2x, or their ratio. But how can these be obtained? Not from the

data themselves. In sociology, at least at the present time, it is
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difficult to imagine how we would obtain the necessary information without

a good deal more standardization and careful assessment of data collection

techniques.

A second approach that would be extremely handy if it actually

worked is to utilize certain grouping procedures suggested by Wald and

Bartlett, among others. 11 These essentially involve ranting individuals

according to their X' scores, placing them into two groups according to

these X' scores (say, group 1 = top third and group 2 = bottom third),

taking mean X' and Y scores for each group (X'1,Y1) and (D2,12) and then

forming the simple slope estimate

Y2 Y1byx =

3P 2 1

Wald has shown that, if the method of grouping is independent of the

measurement error in X, then the proposed estimator will have negligible

biases. But in practical applications it appears to be impossible to

meet this critical assumption, since grouping must be done by the X'

scores, rather than the true X values. Several sets of computer-

generated data have led to the conclusion that the estimated biases using

the Wald-Bartlett procedure are practically identical to those ob-

tained with ordinary least squares.12 It therefore appears as though

this very simple attack on the problem will not prove fruitful, although

additional studies will be needed to demonstrate this convincingly.

A third approach, which holds considerably more promise provided

we can gain greater confidence in our theories, involves the use of

13what have been termed "instrumental variables. 11 In brief, this ap-

proach requires us to locate variables that are direct or indirect causes
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of the independent variable X but that do not appear in the equation for

the dependent variable Y. For example, in the case of the simple model

W + X Y the instrumental-variable estimator of 137a, denoted by b*yx19

involves the ratio of the (sample) covariances of Y and X' with the in-

strumental variable W. Thus

b* -
/X'

Ewx'

where the small-case letters refer to deviations around the respective

means, and where we again assume that X' = X + e, with e being a random

variable.

It can be shown that b*
YX'

is a consistent estimator of P.
YX

which
,

means that its large-sample biases will be negligible even with rather

large random measurement errors in X. We have shown, using computer-

generated data, that if the assumptions of the model are met, the

instrumental - variables estimator works much better than ordinary least

squares in the presence of varying amounts of random measurement errors. 14

However, if there is 'specification error," or error in the model

itself, the instrumental-variables approach is likely to produce greater

biases (and also greater standard errors) than ordinary least squares.

In the important case where W appears in the equation for Y, contrary

to assumption, it can be shown that both ordinary least squares and the

instrumental-variables estimators will involve biases, apart from the

question of measurement error in X. To the degree that W and X arc highly

correlated, these biases will be approximately equal, but the weaker the

relationship between W and X, the greater the relative bias of the

instrumental-variables estimator. If W does appear in the equation for

Y, this means that W causes Y through one or more paths in addition to
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the path through X. Of course if these alternative paths can be ac-

counted for, say by introducing additional intervening links explicitly

into the equation for Y, then this particular problem can be handled.

We see, however, that this approach requires that one make rather strong

theoretical assumptions (about the operation of a third variable) in

order to assess measurement error.

The final two approaches that will be summarized in this section

both require multiple measures of X. In the first of these, there must

ordinarily be two or more measures of each variable that has been imper-

fectly measured. Although this general approach is also utilized in

factor analysis and in corrections for attenuation commonly made in

psychological testing, we shall illustrate an explicitly causal version

due to Costner.
1
5 A simple model exemplifying this approach is given in

Figure 6. The two indicators of X are designated as X' and X2, and simi-

larly for Y. The absence of additional arrows connecting the indicators

implies that the measurement errors in all cases are assumel to be com-

pletely random. The letters a, b, c, d, and e represent path coeffi-

cients, which in this particular model are also (unmeasured) correla-

tion coefficients. We allow for the possibility that the measures of

both X and Y are not equally good bynot imposing the restriction that

a = b or d = e, as will later be done in the case of overtime data.

Since X and Y are themselves unmeasured, none of the path coeff i-

cients can be obtained in a direct fashion. However, there will be six

intercorrelations among the four indicators X1, X2, Y1, and Y2, and we

may write an equation for each of these correlations in terms of the

five unknown path coefficients. These are as follows:
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r
X X = ab rx = ace
1 2 1 2

rY Y1 2
= de r

X2Y1
= bcd

r
X

= acd rr\, v = bce
1
Y
1 "24.2

It can be seen that we can then solve for each of the path coefficients.

For example

a2bcd rx x rx y abc2de ry y rx y
1 2 la d

c2a
? -1 1 2 2

-
bcd rx y

and
rXXrY1Y

2 1

Also, since there is one more equation than unknown, we obtain a

redundant equation that can be used to test the adequacj of the model,

since it will not automatically be satisfied by all data. One way

of expressing this equation is as follows

rx rx = rx rx = abc2de
1 1 2 2 1 2 2 1

This can be thought of as a generalization of the procedure used in cor-

recting for attenuation, where it is additionally assumed that so-called

equivalent forms have been used, so that we may set a = b and d = e.

It should be cautioned, however, that certain specific models involving

nonrandom measurement error can also satisfy the above condition. One

such possibility will be discussed below; others are considered by Costner.

Therefore this condition can be considered as necessary but not suffi-

cient. Of course in real instances there will be sampling error super-

imposed on measurement error, so that the condition will never be ex-

actly satisfied, even where measurement errors are completely random.

The point is that if the assumptions of the model seem reasonable, we

may use the correlations among indicators to infer all of the true cor-

relations or path coefficients.

Heise discusses a very similar approach that can be used whenever
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one has single indicators of variables at three or more points in time.
16

In the model of Figure 7 there are two indicators Xii and Xi2 at each

of three times (i = 1, 2, 3), but we shall for the time being consider

only the first indicator at each time period. The model assumes that

there is the same relative measurement error a
2

e
/a

2
X at each time period.

This assumption permits us to use the same path coefficient a repre-

senting the link between X and its indicator, thereby reducing the num-

ber of unknowns. If one uses the same measuring instrument at each

time it might be plausible to assume the constancy of a
2

e
, though of

course the variance in X will depend on the effects of extraneous fac-

tors that may not continue to operate so as to justify this important

simplifying assumption.

If we first assume that data involving the single indicator were

available at only times 1 and 2, we would have only a single correlation

with which to estimate the two coefficients a and c. Thus

2
rX11X21

a c

If we were willing to assume that X remains constant over the interval,

this would imply that c = 1, and we could therefore obtain an estimate

of a2 as an indication of measurement reliability. But if there is

true change in X, plus random measurement error, we cannot estimate

either coefficient unless we have a third observation and unless we make

additional assumptions, such as those implied in the model of Figure 7.

With three points in time we have three equations and three unknowns as

follows:

= a
2
cr

X
11X21 and = -adr

X
21
X
31
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and we see that the path coefficients can all be estimated. Thus

a2 rX11X21rX211131
C

ry ry v
, and d=

rx
11
X
31

rX
21 31

rX
11
X
21

These procedures suggested by Costner and Heise can be combined

rather simply and, as we shall see, such a combination can be used ef-

fectively to infer certain kinds of nonrandom errors.17 In the case of

purely random errors, we can see that we can use two measures of X at

only two points in time to infer the coefficients. Thus in Figure 7 if

we utilize the measures X11, X12, X21, and X22 we have asituation.that is

identical to the model of Figure 6, with the added simplifications made

possible by the fact that Y has been replaced by X at time 2. These

simplifications reduce the number of unknowns by two and provide two ad-

ditional equations that must be satisfied by the data if the model is

to be retained. If we use more than two indicators of X, or more than

the two time periods, we obtain further redundant equations for testing

purposes.

Nonrandom Errors, When we introduce the realistic possibility that

measurement errors may be nonrandom, we open Pandora's box. On the

conceptual level, we must face up to the problem of developing auxil-

iary theories specifying our assumptions as to the linkages between

measured and unmeasured variables. Where a single indicator is linked

to several unmeasured variables, the model is likely to become too com-

plex to handle without additional simplifications. In general, the

higher the percentage of unmeasured variables in the system, the simpler

the model must be in other respects. This point should become more ape -

parent as we proceed.

Perhaps the simplest kind of nonrandom measurement error is a



constant error that affects only intercepts in a regression equation.

Somewhat less simple are sources of measurement error in X that can be

taken as functions of the level of X itself. In these instances we

may again write X' = X -I- e, where e is some function of X. Hopefully,

it may be reasonable to take the error component as a linear function

of X, plus a completely random component u, so that we may write an

equation for X' in the form X' = a + bX u, where u is unrelated to

all variables in tna system. It can be shown in this instance that

Costner's procedure for estimating path coefficients (or correlations)

can be applied exactly as before, although the true slope connecting

Y to X cannot be estimated because of the error in scale appeacing in

X'.)8

Errors proportional to X can arise as a result of several kinds of

distortions. For example, there may be a regression toward the mean

of X in an attitudinal questionnaire produced by a norm favoring mod-

erate or intermediate responses. That is extreme liberals may tend

to answer as moderately liberal, and extreme conservatives as moderately

conservative. There may also be errors due to "ceiling' or "floor"

effects that are primarily in the direction of less extreme scores.19

Whenever a small number of ordered categories are used extreme true

scores are likely to be bunched together, with the seriousness of the

distortions being a function of the number of categories and the rela-

tive numbers of individuals appearing in the extreme categories. Al-

though these kinds of measurement errors can best be described in terms

of nonlinear functions of X, a linear function with a negative slope

may be taken as a reasonable approximation.

Other kinds of nonrandom errors are not so easy to handle. In

22
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many instances we expect nonrandom errors to be produced by extraneous

factors that are difficult to identify and measure. For example, rov-

ernments may distort their official records in systematic ways, so as

to improve their outside images. Individuals may similarly tend to

give conventiral answers on many different kinds of questions. Inter-

viewer biases may persist across many different sets of items, and so

forth. In all of these instances, our first task (ideally) is to con

struct a model containing the i.::esumed source of nonrandom error

linked to whichever system variables seems appropriate. If these dis.,.

turbancec= can be measured and their effeets thereby taken into con

sideration, there may be no special difficultiesi But if they cannot,

it will be only under very special circumstances that their effects can

be inferred. ;for example, if one has more than two indicators of each

variable, and if only a few indicators are subject to such nonrandom

disturbances, Cotner has shown that these effects can sometimes be,

estimated. 20

Suppose, however, there are only two measures of X both of which

are affected by 2, which may also be linked to X and the other vari-

blea in the system. One such possibility can be diagrammed as in

Figure 8, wheie Z is taken as a cause of W, X, and Y. It can be shown
4.

that if botp X and Z are taken as unmeasured, it will be impossible to

estimate the path coefficients (correlations) between !I and Y and between

X and Y unless Z is unrelated to all three variables W, X, and Y.
21

urthermore, even under these ideal conditions it is necessary to assume

the simple causal chain W 4. X 4 Y in order to es,Amate the link between

X and Y, In other words, we must find an instrumental variable W,

related to the other variables in a very simple way, before we can



estimate the true correlation between X and Y in this model in which Z

is assumed to affect both measures of X.

If we are fortunate enough to have two measures of each variable at

three points in time, we may handle a larger variety of nonrandom mea-

suremPnt errors. Let us consider a single variable X and the model of

Figure 9. This model allows for a simultaneous disturbance path f between

the two indicators at each point in time; equal disturbances g between

the first indicator between times 1 and 2, and between times 2 and 3 a

different disturbance g' between times 1 and 3; and similar disturbance

terms h and h' for the second indicator. Disturbances that might affect

relationships between different indicators at different times, however,

are ruled out. This model contains six measured variables, and therefore

there will be fifteen equations to estimate the nine unknowns.

't is not always true that if there are excess equations a solution

can be obtained, since most of the equations may be redundant. However

in this instance we may solve for the unknowns. The coefficients c and

d, which measure the stability of X over time, can be estimated by the

simple equations

c =

r
x11x32 abed

and d =

r
x11x32 abed

r, abd rx
11
x
22

abc
'21 32

Some of the remaining coefficients, however, can only be estimated reli-

ably under special conditions. For example, the estimates of a
2
and b

2

involve the difference between c and d, or the difference in stability

between times 1 and 2 and between times 2 and 3. Unless c d is rela-

tively large, these estimates may involve extremely large sampling errors.

The practical implication suggested by these few examples -- and

24
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there are many other possibilities that need to be studied--is that

the more complex and realistic we make our assumptions about measure-

ment errors, the more unknowns we introduce into the picture, and the

greater the price we must pay in other respects. We must either in-

clude other instrumental variables in such a way that they are simply

related to the basic variables of interest, or we must have multiple

measures of each unmeasured variable. The picture becomes even more

disturbing when we consider theories containing variables that are only

very indirectly measured, and where we know that there are complex con-

nections between underlying variables and their indicators.

For example, consider the measurement of several different kinds of

minority discrimination. If discrimination is defined theoretically

as the differential treatment of minority members with respect to edu-

cational opportunities, housing, occupation, income, and so forth,

then we will seldom be in a position to observe such discrimination

directly. Instead, our measures will consist of inequalities or degree

of segregation. It would be convenient to take educational inequalities

as indicators of job discrimination,and income inequalities as indi-

cators of income discrimination, but this would indeed be too simple.

Not only would this neglect differences in motivation, other forms of

minority behavior, and possible innate diffarences, but it would ignore

the fact that income inequalities depend on educational discrimination,

occupational discrimination, and income discrimination. Residential

segregation may also depend on all three, and so forth. Therefore we

will have multiple indicators of multiple unmeasured variables, and

there will be far too many unknowns for solution.

Under certain limited kinds of restrictive assumptions, multiple
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factor analysis may be used to help disentangle the variables. But NAlen

some of the indicators are also linked by additional variables, the

situation becomes much more difficult to handle. Suffice it to say

that we have hardly begun to explore the implications of these kinds of

measurement complications. All too of ten, our simplistic assumptions

are not made explicit. For example, in the above illustration if we

were to proceed by taking educational inequality as the indicator of

educational discrimination, and so forth, this would amount to assuming

no direct links between the remaining types of discrimination and the

other indicators. It would seem far better to force such assumptions

out into the open, where they can be subjected to careful scrutiny, than

to hide them from view. For unless they are made fully explicit we

cannot begin the difficult task of analyzing our measurement procedures.

IMPLICATIONS

Of the two major obstacles mentioned in the introduction, I am

relatively optimistic that we can proceed rather systematically to

build more and more complex theories that are increasingly realistic.

Once we have formed the habit of stating our propositions and assumptions

explicitly, and once we have learned to tolerate theoretical models

that are relatively more simple than we might like, we will set in

motion a cumulative Process through which inadequacies in each formu-

lation can gradually be corrected. Of course we must avoid the tempta-

tion of introducing so many modifications that the theory becomes in-

herently untestable because of the presence of too many unknowns in the

system. But there seem to be few methodological or psychological

reasons why we cannot learn to construct highly complex theories that
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are, in principle, testable.

The major roadblock, as has been implied throughout this discussion,

would appear to consist of a series of problems associated with the

measurement process. These problems are both methodological-conceptual

and practical. Data collection is both expensive and time-consuming,

and unfortunately sociologists can seldom rely on outside agencies to

collect data on variables of primary interest. Although we may make

heavy use of census data and other kinds of official records, we usually

find that we must postulate rather tenuous links between the indicators

that are most readily available and the conceptual variables appearing

in our theories. As we become increasingly interested in cross-national

studies, these practical problems will be all the more serious. It

seems safe to assume, therefore, that data collection will lag con-

siderably behind both, our methodological sophistication and our ability

to formulate theoretical models.

I believe this will have serious implications for the profession

and the way we are organized to conduct our research. At present, we

are poorly coordinated. Individual or small team research is the pre-

vailing pattern, and few attempts have been made to consolidate and co-

ordinate studies, to standardize variables and their indicators, or to

replicate research in systematic ways. Greater prestige is awarded

to the person who constructs a new scale than to the investigator who

patiently replicates and revises an older one. We appear to cling to

the belief that superior measuring instruments and concepts will even-

tually win out in the competition with the others, but we have hardly

begun even to define the rules under which the footrace should be run.

As a result, the number of concepts and indicators seems to be
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proliferating at an alarming rate.

In spite of the obvious disadvantages it would entail, I believe it

is time to begin the effort to coordinate our activities, to standardize

our measuring instruments, and to expand the scale of our research

operations. This cannot be done in such a way as to inhibit flexibility

or to discourage exploratory research by single investigators. Obviously

a division of labor is necessary, particularly in connection with data

collection procedures. Perhaps it will be possible to select one or two

subfieids on an experimental basis, to form data-collection institutes

in these substantive areas, and to formulate rather ambitious projects

that make it possible to collect longitudinal as well as cross-national

data.

The dangers of political control and of elitism are rather obvious

in such operations, and for this reason it may be necesaary to assure

that boards of social scientists control the basic policies of such in-

stitutes and that all data be made available to individual scholars at

a reasonable cost. At the same time, careful quality control must be

instituted. An advantage of the large-scale institute is that it can

afford to hire measurement specialists who may conduct methodological

studies and attempt to assess the extent and nature of measurement error

in each, variable. Hopefully, if a number of individual analysts all have

access to the same data sets, and if they can agree on standard term-

inology, we may begin the long road toward reducing the number of slightly

different vocabulary systems that presently exist in the field.

The reward structure of the profession must also be changed to a

major extent. At present we tend to reward either the quick study
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that can be immediately worked into a journal article or the book-

length monograph that contains table after table, analyzed in such a

way that the intelligent layman can follow the argument without dif-

ficulty. Such a system does not motivate one to conduct longitudinal

studies of more than a year or two in duration or to utilize more

sophisticated methods of data analysis. Since data collection by

individuals is very expensive--unless it is done on the college campus--

replication studies have low payoff. Furthermore, they are harder to

get published in the major journals. Hopefully, the presence of a

number of data-collection institutes with reasonably long life span

could help correct this deficiency, particularly if secondary data

were readily made available to graduate students for term papers and

M.A. theses.

Although it is difficult to know how to correct for the problem, it

seems obvious that, from the standpoint of the necessity of improving

our measurement procedures, sociologists are spreading themselves

too thin. We cannot possibly study intensively every interesting

social phenomenon that might conceivably be "relevant" to sociology,

and yet it would be unwise to attempt to eliminate substantive areas

by fiat, if this were even possible. Again, given the shortage of

manpower and the fact that sociologists are heavily engaged in the

teaching function as well as in research, it would seem wise tc, attempt

to select a few substantive areas for intensive research. Presumably,

the methodological problems encountered in these areas will be suffi-

ciently similar to those areas less intensively studied that they can

be applied much more generally.

It is not easy to suggest a definite list of substantive areas with



high potential, or to formulate a practical mechanism by which se-

lective concentration can be brought about. Clearly, some social

problem areas are capable of attracting more research funds than

others, but it does not follow that forced feeding will produce im-

portant results. For example, the field of 'medical sociology" has

enjoyed large-scale federal financing in the U.S., but the field ap-

pears to be too diffuse and too low prestige (at least in America)

to have had the desired theoretical and methodological payoff. Fields

that are closer to the 'core' of sociology, such as stratification,

large-scale organizations, social psychology, and human ecology, do

not seem to have attracted major funds, whereas certain others, such

as race relations and population, have been subjected to non-and-off"

policy decisions that have made long-range planning difficult.

Partly because of the fact that specialists with common inter-

ests are scattered in different educational institutions in order to

attain balance with respect to the teaching function, sociologists in

a single substantive field are seldom able to communicate extensively

except at annual meetings or brief conferences. It therefore seems

advisable for the profession to obtain funds to bring such special-

ists together for prolonged periods for the purpose of cross-

fertilization and standardization.

Finally, we very much need to correct various imbalances in

the degree to which different kinds of methodological problems are

taken into consideration in our research decisions. Of course this

is partly a function of differential ignorance of the consequences of

errors of various kinds. Thus we seem to be much more aware of the

properties of different levels of measurement (e.g., ordinal versus
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interval scales) than of different kinds of nonrandom measurement

errors. Similarly, we are much better acquainted with scaling pro-

cedures and ways of inferring multidimensionality than with problems

of aggregation and autocorrelation that have been studied by econo-

metricians. To the degree that one is a methodological "purist"

who strives to avoid making unreasonable assumptions, this kind of

differential knowledge of consequences of unmet assumptions may have

a considerable impact on analysis strategies. For example, I am con-

vinced that one of the reasons why survey data are often "under-

analyzed' is that many investigators, wishing to avoid dubious as-

sumptions to the effect that an interval-scale level of measurement

has been attained, resort to simple cross-tabulations involving at

most three or four variables. Not only does such a practice amplify

measurement errors but, in effect, it forces one to assume that a

very small subset of variables can be analyzed apart from the rest.

In short, much remains to be accomplished before we can begin

to "test" our theories in a satisfactory way. It would be unwise,

however, to become so overly purist that we are immobilized because

of well-recognized but unmet assumptions. It is best to plunge

ahead, making our assumptions explicit and examining their implica-

tions one by one. But it is also time to include our assumptions

about measurement errors and to begin the very important task of

reorganizing our research operations so as to close the gap between

theory and research.



32

FOOTNOTES

1. For a discussion of the role of such auxiliary theories see

H. M. Blalock, "The Measurement Problem A Gap Between the Languages

of Theory and Research," in H. M. Blalock and Ann B. Blalock (eds.),

Methodology in Social Research (New York: UcGraw-Hill, 1968), Chap. 1.

2. For a technical discussion of the properties of block-recursive

systems see Franklin M. Fisher, The Identification Problem in Economet-
grame.01.1 Iiww,01..^.....1

ries (New York: McGraw-Hill, 1966), Chap. 4. For a much less technical

discussion see H. M. Blalock, Theory Construction (Englewood Cliffs,

N.J.: Prontice-Hall, 1969), Chap. 4.

3. Fisher, 22. cit., p. 101.

4. See J. Johnston, Econometric Methods (New York: McGraw-Hill,

1963), pp. 149-150.

5. Robert A. Gordon, "Issues in Multiple Regression,' American

Journal of Sociology, 73 (March 1968), pp. 592-616.

6. Such measurement error would of course also reduce correla-

tions with the other independent variables, so that minor changes in

Gordon's figures would be required in a more realistic example.

7. For a more complete discussion of these and other kinds of

distortions see H. M. Blalock, "Some Implications of Random Measure-

ment Error for Causal Inferences," American Journal of Sociology,

71 (July 1965), pp. 37-47.

8. For discussions of the causal asymmetry problem in this con-

nection see Herbert L. Costner and Robert K. Leik, "Deductions from

'Axiomatic Theory'," American Sociological Review, 29 (December 1964),

pp. 819-835; and Blalock, Theory Construction, op. cit., Chap. 2.



33

9. Additional examples of this type are discussed in H. M. Blalock,

"Tests of Status Inconsistency Theory A Note of Caution," Pacific

Sociological Review, 13 (Fall 1967), pp. 69-74.

10, See Gerhard E. Lenski, "Comment," Public Opinion Quarterly)

28 (Summer 1964), pp. 326-330.

11. See Abraham Wald, "The Fitting of Straight Lines if Both

Variables are Subject to Error," Annals of Mathematical Statistics, 2

(1940), pp. 284-300; M. S. Bartlett, "Fitting a Straight Line when

Both Variables are Subject to Error," Biometrics, 5 (June 1949), pp.

207212; and Albert I4adansky, "The Fitting of Straight Lines when Both

Variables are Subject to Error," Journal of the American Statistical

Association, 54 (March 1959), pp. 173-205.

12. H. M. Blalock, Caryll S. Wells, and Lewis F. Carter, "The

Statistical Estimation of Random Measurement Error" (unpublished manu-

script).

13. For discussions of instrumental variables see Johnston, ap. cit.,

pp. 165-166; Carl Christ, Econometric Models and Methods (New York;

John Wiley, 1966), pp. 404-410; and Blalock, Wells, and Carter, 22. cit.

14. Ibid.

15. See Herbert L. Costner, "Theory, Deduction and Rules of Corres-

pondence," American Journal of Sociology, 75 (September 1969, pp.

16. See David R. Heise, "Separating Reliability and Stability in

Test-Retest Correlation," American Sociological Review, 34 (February

1969), pp. 93-101.

17. See H. M. Blalock, "Estimating Measurement Error using Multiple

Indicators and Several Points in Time" (unpublished manuscript).

13. See H. U. Blalock, "A Causal Approach to Nonrandom Measurement



Errors" (unpublished manuscript).

19. For further discussion of ceiling effects sea Paul H. Siegel

and Robert W. Hodge, "A Causal Approach to the Study of Measurement

Error," in Blalock and Blalock, op. cit., Chap. 2.

20. See Costner, 211.. cit.

21. Blalock, "A Causal Approach to Nonrandom Measurement Errors,"

211.. cit.

22. Blalock, "Estimating Measurement Error," op. cit.

34










